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Dynamic approach to weak first-order phase transitions
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A short-time dynamic approach to weak first-order phase transitions is proposed. Taking the two-
dimensional Potts models as examples, from short-time behavior of nonequilibrium relaxational processes
starting from high temperature and zero temperature states, pseudo-criticalkpomsl K** are determined.

A clear difference of the values fét* andK** distinguishes a weak first-order transition from a second-order
one.

PACS numbes): 64.60.Ht, 02.70.Lq, 05.70.Fh, 82.20.Mj

In recent years, much progress has been achieved in nonific heat, susceptibility, order parameter, Binder cumulant
equilibrium critical dynamics. For example, in a dynamic of energy, or the transition point, e.g., see Rgi8,15-21.
process in which a system initially at a high temperature or dlowever, when a first-order transition is very weak, it be-
zero temperature state is suddenly quenched to the criticgomes subtle. The lattice sizes one reaches in simulations
temperature or nearby and then evolves dynamicatigrt-  hardly feel the difference between very large correlation
time universal scaling behavior has been foUd¢2]. This lengths in weak first-order transitions and divergent ones in
phenomenon is rather fundamental. It exists not only in stosecond-order transitions. The double peak structure of the
chastic dynamics described by Langevin equatidng] or ~ energy distribution together with the finite size scaling shows
Monte Carlo algorithmg2,4—8, but also in deterministic its merit in this respedt22—24, but further efficient methods
dynamics described by fundamental microscopic equationare still desired.
of motion [9]. More interestingly, based on the short-time In this Brief Report, we propose a short-time dynamic
scaling form, it is possible to determine not only dynamicapproach to weak first-order transitions. As examples, we
exponents but also static exponents as well asctiteal investigate the two-dimensionajstate Potts models. The
temperaturg10,11]. Since the measurements are carried outransition point is exactly known aK.=In(1+ Jq). The
in the short-time regime, one doest suffer from critical ~ phase transition is second order fip=4 and becomes first-
slowing down. Compared withonlocal cluster algorithms, order for g=5. For smallqg, the first-order transitions are
the short-time dynamic approach does study properties of theeak. Especially, fog=>5 the transition is so weak that with
local dynamics and applies to systems with quenched rarstandard methods one hardly sees difference from a second-
domness. For a review, see REE2]. order one.

Naturally, it is interesting and attractive to explore pos- At a second-order transition point, short-time behavior of
sible applications of short-time dynamicsftst-order phase physical observables is a power law in dynamic processes
transitions. Especially, due to large correlation lengths angtarting frombotha random and an ordered state. Away from
small discontinuities, aveak first-order transition presents the critical point, the power law behavior is modified by a
quite similar behavior as a second-order one. It has long beestaling function[12]. At a first-order transition point, inde-
challenging how to distinguish one from the other. Further-pendent of initial states, physical observables do not present
more,slowing downin Monte Carlo simulations at first-order a power law behavior due to the finite correlation time or the
transitions is even more severe than at second-order onesymmetry breaking. If the transition point is known, this is
Nonlocal cluster algorithms also do not show much morealready a signal for first-order transitions. If the transition
efficiency. point is not known, we need further investigations.

In numerical simulations at first-order transitionsequi- Around a first-order transition point, it is well known that
librium, to locate the transition point one usually searches fofor K>K, there is adisordered metastablstate, which van-
the maximums of the specific heat, susceptibility, or a Bindeishes at a certaiiK*. For K<K there exists arordered
cumulant constructed from energ3]. For a system with metastablestate, which disappears t* . For aweakfirst-
lattice sizeL, these maximums deviate from the real transi-order transition, botiK* andK** look like critical points if
tion point by a power law 1/%. To remove this power law the system remains in the disordered and ordered metastable
deviation, special techniques have been introdufkd. states, respectively. They are namgskudocritical points
With these techniques, first-order transition points can bé25,26. In equilibrium, numerical measurementskf and
determined rather accurately from moderate lattice sizeK** are not easy due to finite-size effects. However, in
even for weak first-order transitions. short-time dynamicsk* andK** can be determined rather

To distinguish a first-order transition from a second-orderconfidently. Starting from a high temperature state, Kor
one, naively one may explore a signal for discontinuity of the>K . the system reaches the disordered metastable state first.
order parameter by increasing the lattice sizes. Refined metlBue to the large correlation time induced by the large spatial
ods are typically based on ttimite size scalingf the spe-  correlation length in the metastable statei &tphysical ob-
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FIG. 1. Seven-state Potts modé®) M®)(t) on log-log scale folK =1.293562 K), 1.294 210, and 1.294 85from below) with L
=280.(b) M(t) for K=1.2929, 1.2930, and 1.293from below) with L =280.

servables present an approximate power law behavior. The&table andK* is clearly aboveK. The final value foK* is
weakerthe transition is, theleanerthe power law behavior estimated to b&3,=1.293 854(29). This is consistent with
will be. This gives an estimate d&€*. Starting from a zero the valueK* =1.2945(9) given in Ref[26]. However, the
temperature state, faf <K, the system reaches the orderedlatter can hardly distinguisK* from K. within the error.
metastable state first and one can deterrdifié. In second- To determineK** , we study a dynamic process with an
order transitionsK* and K** overlap with the transition orderedinitial state. We have performed extra simulations
point K.. Therefore, a difference df* and K** gives a for L=560, up tot,,,,=6000. Total samples foL =140,
criterion for a weak first-order transition. 280, and 560 are 7000, 1500, and 135, respectively. In Fig.
For not too weak first-order transitions, the power lawl(b) the magnetization withL=280 is plotted for K
behavior of the observables will not be so clean and/or will=1.2929, 1.2930, and 1.2931. The curve fdf,
not last a long time. Determination &* andK** becomes =1.293562(not in the figurg is much above that for 1.2931
somewhat ambiguous. But this is not a weak point of ourand very far from power law behavior. However, at the
method. If no power law behavior will be observed at anypseudo-critical-pointK** we will observe approximate
temperatures, it already indicates that the transition is nopower law behavior. Searching for a curve with the best
second order. power law behavior from the three curves in Figb)l we
We first determineK* for the seven-state Potts model. determine the pseudo-critical-poikt™* . The results are pre-
We consider a dynamic process in which the system initiallysented in the lower part of Fig. 2. The values are clearly
in arandomstate is suddenly quenchedKq or above, then belowK_..
evolves dynamically. We have performed simulations with  Another interesting observable is the Binder cumulant
the heat-bath algorithm. Lattice sizes dre=140 and 280 U(t)=M®@)(t)/[M(t)]>—1. If a transition is second order,
and maximum updating times atg,,=2000 and 6000, re- U(t) obeys a power law at the transition point. Therefore it
spectively. Total samples for averaging are 4600 and errorsan also be used for the determinationkdf* . Results are
are simply estimated by dividing the data into four sub-included in Fig. 2. Summarizing all these measurements
samples. leads toK3Z =1.293 0087).
In Fig. 1(a), the second momern ?)(t) with L=280 is
displayed forK =1.293562 K.), 1.294 210, and 1.294 857  1.2945——
on a log-log scale. Apparently, &t the curve benddown-
ward and does not show a power law behavior. But at a i *
slightly bigger K, i.e. K*, one observes an approximate | .l
power law behavior. WheK becomes bigger thak*, the = =5 =5
curve bendsipward ThereforeK* indeed looks like a criti- L;Ijm‘:::
cal point[12]. K 712035625
In the short-time dynamic approach, practically we locate a0 o
the pseudo-critical-poirkk* by interpolatingM ®)(t) among Cs oy
the three simulatel’s and searching for the best power law o & [=280.U0 o
behavior[11,12. In short-time critical dynamics, it has been 1230w« Tor I il
intensively discussed that universal behavior emerges only | K
after a time scalé,;; that is large enough in a microscopic
sense. If a Monte Carlo time stéa sweep over all spins on 1205l 1 - L PR S S —
the latticg is a microscopic time unit,y;. is typically 10 to
some hundred time stepdl?2]. In first-order transitions,
physical behavior at anacroscopiclevel is presented also  FIG. 2. Seven-state Potts model. The upper part shotveb-
only aftert,;.. In the upper part of Fig. Z* obtained with  tained fromM()(t) in the interval[t,ty,,,. The lower part shows
data in a time interva[t,ty,,] IS shown. The results are K** obtained fromM (t) andU(t). The line denote ..
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FIG. 3. Five-state Potts modefa) M®)(t) on log-log scale fork,=1.174359 andK=1.174570 withL=560. (b) M(t) for K

=1.174 280 anK.=1.174 359 withL =560.

For the five-state Potts model, the transition is extremely

In Table I, all results forK* and K** have been col-

weak. One should carry out the simulations very carefullylected. For both the seven-state and the five-state Potts

To locateK*, we have first performed simulations with
=560 forK=1.174359 K.), 1.174946, and 1.175533, up
to tya,=10000 with 1800 samples. The resultirgz,

model,K* andK** are clearly above and below the transi-
tion pointK., respectively. Our short-time dynamic approach
indeed provides a safe criterion for a weak first-order transi-

=1.17 445(6) is not accurate enough. Therefore anothetion. For standard second-order transitioks; and K**

simulation has been carried out l§t=1.174 570, which is
much closer tdK*. In Fig. 3a), the second moments fds

(i.e., K;) determined from both dynamic processes overlap
within errors[12]. Due to strong corrections to scaling, the

=1.174359 K.) and 1.174570 are displayed. With thesefour-state Potts model is known to be complicated in simu-

data, more accurate values #f are obtained and collected
in the upper part of Fig. 4. We estimate the averagéd
=1.1744047).

Similar is the case for the determinationkof* . We have

lations in equilibrium. In short-time dynamics, our data also
show that the measurd* andK** are relatively sensitive

to the time interval for the measurements. But there are by
no means signals th&t* is bigger tharK** .

first performed simulations with an ordered initial state with ~ Since our dynamic measurements are carried out in the
L =280 and 560 foK =1.173 890, 1.174 125, and 1.174 359 short-time regime when the spatial correlation length is still
(K¢), Up tot,,a=10000 with total samples 725. From the short, we can easily control the finite-size effect. We also do

data for the magnetization we estimate a rou§fs
=1.174289). Then we performed simulations aK
=1.174280 and 1.174 35%() up tot,,,,=40000. The re-
sults are not sensitive to whether we take,,= 10000 or
40000. In Fig. 8), the magnetization a&=1.174 280 and
1.174 359 K,) are plotted. From the lower part of Fig. 4, we
obtain a final valu{y =1.1743222).
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FIG. 4. Five-state Potts model. The upper part shéfisob-
tained fromM )(t) with L=560 in the interva[t,t,,,,= 10 00Q.

The lower part show&** obtained fromM (t) with L=560 in the
interval [t,t,.x=40000. The line denotek . .

not have the problem of generating independent configura-
tions and therefore do not suffer from slowing down. After
excluding the finite-size effect, the measurements are sensi-
tive enough to distinguish a finite but very large spatial cor-
relation length in equilibrium from an infinite one. This is
why our method is successful.

With the pseudo critical points in hand, assuming similar
scaling laws as in second-order transiti©g], one can es-
timate corresponding pseudo critical exponentskAt e.g,

M@(t)xt®, c,=(d—28/v)lz. )

At K** | for the magnetization,
M(t)ct™ %1, ci=pBlvz, 2

while for the Binder cumulant
U(t)xtv, cy=d/z. ©)]

TABLE |. Pseudo-critical-point&** andK* for the five-state
and seven-state Potts models, in comparison with the transition
pointK..

K** KC K*
gq=>5 1.1743212) 1.174359 1.174403)
q=7 1.2930087) 1.293562 1.2938529)
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TABLE Il. Pseudo critical exponents for the five-state and
seven-state Potts models.

cr* cy cs
q=5 0.0912) 0.933) 0.7163)
q=7 0.02392) 0.8858) 0.5025)

Here d is the dimension of the lattice3 and v are static
exponents, andis the dynamic exponent. However, the val-
ues of the exponents &* andK** can be different. Plot-
ting the observables wsin log-log scale, one measures the

exponents from the slopes. The results are given in Table |
We admit that complete sets of exponents cannot be obtaine

so easily. One needs more careful simulations.
In conclusion, we have proposed a short-time dynam
approach to weak first-order transitions. From nonequilib
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order one. Since the measurements are carried out in short-
time regimes, the method does not suffer from slowing
down. Different from many techniques developed in simula-
tions in equilibrium, our method is not based on the finite-
size scaling.

A simple average oK* and K** gives a rather good
estimate of the transition poitt., especially for very weak
transitions. For example, for the five-state Potts model (
+K**)/2=1.174 363 and the relative deviation from the ex-
actK, is only the order of0(10 ). It is interesting to in-
vestigate how to obtain an accuratg for not too weak
transitions. Furthermore, how other relevant observables
Isuch as the specific heat and energy distribution evolve in
npnequilibrium dynamics is also an important topic. It is
challenging whether from short-time dynamics one can esti-
mate the latent heat and the discontinuity of the order param-
eter in equilibrium.

rium short-time behavior of two dynamic processes starting
from random and ordered initial states, pseudo critical points The authors thank Z.B. Li and Q. Wang for comments.

K* and K** are determined. Difference &€* and K**
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