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Dynamic approach to weak first-order phase transitions
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A short-time dynamic approach to weak first-order phase transitions is proposed. Taking the two-
dimensional Potts models as examples, from short-time behavior of nonequilibrium relaxational processes
starting from high temperature and zero temperature states, pseudo-critical-pointsK* andK** are determined.
A clear difference of the values forK* andK** distinguishes a weak first-order transition from a second-order
one.
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In recent years, much progress has been achieved in
equilibrium critical dynamics. For example, in a dynam
process in which a system initially at a high temperature o
zero temperature state is suddenly quenched to the cri
temperature or nearby and then evolves dynamically,short-
time universal scaling behavior has been found@1,2#. This
phenomenon is rather fundamental. It exists not only in s
chastic dynamics described by Langevin equations@1,3# or
Monte Carlo algorithms@2,4–8#, but also in deterministic
dynamics described by fundamental microscopic equat
of motion @9#. More interestingly, based on the short-tim
scaling form, it is possible to determine not only dynam
exponents but also static exponents as well as thecritical
temperature@10,11#. Since the measurements are carried
in the short-time regime, one doesnot suffer from critical
slowing down. Compared withnonlocal cluster algorithms,
the short-time dynamic approach does study properties o
local dynamics and applies to systems with quenched
domness. For a review, see Ref.@12#.

Naturally, it is interesting and attractive to explore po
sible applications of short-time dynamics tofirst-order phase
transitions. Especially, due to large correlation lengths
small discontinuities, aweak first-order transition present
quite similar behavior as a second-order one. It has long b
challenging how to distinguish one from the other. Furth
more,slowing downin Monte Carlo simulations at first-orde
transitions is even more severe than at second-order o
Nonlocal cluster algorithms also do not show much m
efficiency.

In numerical simulations at first-order transitionsin equi-
librium, to locate the transition point one usually searches
the maximums of the specific heat, susceptibility, or a Bin
cumulant constructed from energy@13#. For a system with
lattice sizeL, these maximums deviate from the real tran
tion point by a power law 1/Ld. To remove this power law
deviation, special techniques have been introduced@14#.
With these techniques, first-order transition points can
determined rather accurately from moderate lattice siz
even for weak first-order transitions.

To distinguish a first-order transition from a second-ord
one, naively one may explore a signal for discontinuity of t
order parameter by increasing the lattice sizes. Refined m
ods are typically based on thefinite size scalingof the spe-
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cific heat, susceptibility, order parameter, Binder cumul
of energy, or the transition point, e.g., see Refs.@13,15–21#.
However, when a first-order transition is very weak, it b
comes subtle. The lattice sizes one reaches in simulat
hardly feel the difference between very large correlat
lengths in weak first-order transitions and divergent ones
second-order transitions. The double peak structure of
energy distribution together with the finite size scaling sho
its merit in this respect@22–24#, but further efficient methods
are still desired.

In this Brief Report, we propose a short-time dynam
approach to weak first-order transitions. As examples,
investigate the two-dimensionalq-state Potts models. Th
transition point is exactly known atKc5 ln(11Aq). The
phase transition is second order forq<4 and becomes first
order for q>5. For smallq, the first-order transitions are
weak. Especially, forq55 the transition is so weak that wit
standard methods one hardly sees difference from a sec
order one.

At a second-order transition point, short-time behavior
physical observables is a power law in dynamic proces
starting frombotha random and an ordered state. Away fro
the critical point, the power law behavior is modified by
scaling function@12#. At a first-order transition point, inde
pendent of initial states, physical observables do not pre
a power law behavior due to the finite correlation time or t
symmetry breaking. If the transition point is known, this
already a signal for first-order transitions. If the transiti
point is not known, we need further investigations.

Around a first-order transition point, it is well known tha
for K.Kc there is adisordered metastablestate, which van-
ishes at a certainK* . For K,Kc there exists anordered
metastablestate, which disappears atK** . For aweakfirst-
order transition, bothK* andK** look like critical points if
the system remains in the disordered and ordered metas
states, respectively. They are namedpseudocritical points
@25,26#. In equilibrium, numerical measurements ofK* and
K** are not easy due to finite-size effects. However,
short-time dynamics,K* andK** can be determined rathe
confidently. Starting from a high temperature state, forK
.Kc the system reaches the disordered metastable state
Due to the large correlation time induced by the large spa
correlation length in the metastable state, atK* physical ob-
7482 ©2000 The American Physical Society
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FIG. 1. Seven-state Potts model:~a! M (2)(t) on log-log scale forK51.293 562 (Kc), 1.294 210, and 1.294 857~from below! with L
5280. ~b! M (t) for K51.2929, 1.2930, and 1.2931~from below! with L5280.
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servables present an approximate power law behavior.
weakerthe transition is, thecleanerthe power law behavior
will be. This gives an estimate ofK* . Starting from a zero
temperature state, forK,Kc the system reaches the order
metastable state first and one can determineK** . In second-
order transitions,K* and K** overlap with the transition
point Kc . Therefore, a difference ofK* and K** gives a
criterion for a weak first-order transition.

For not too weak first-order transitions, the power la
behavior of the observables will not be so clean and/or w
not last a long time. Determination ofK* andK** becomes
somewhat ambiguous. But this is not a weak point of o
method. If no power law behavior will be observed at a
temperatures, it already indicates that the transition is
second order.

We first determineK* for the seven-state Potts mode
We consider a dynamic process in which the system initia
in a randomstate is suddenly quenched toKc or above, then
evolves dynamically. We have performed simulations w
the heat-bath algorithm. Lattice sizes areL5140 and 280
and maximum updating times aretmax52000 and 6000, re-
spectively. Total samples for averaging are 4600 and er
are simply estimated by dividing the data into four su
samples.

In Fig. 1~a!, the second momentM (2)(t) with L5280 is
displayed forK51.293 562 (Kc), 1.294 210, and 1.294 85
on a log-log scale. Apparently, atKc the curve bendsdown-
ward and does not show a power law behavior. But a
slightly bigger K, i.e. K* , one observes an approxima
power law behavior. WhenK becomes bigger thanK* , the
curve bendsupward. Therefore,K* indeed looks like a criti-
cal point @12#.

In the short-time dynamic approach, practically we loc
the pseudo-critical-pointK* by interpolatingM (2)(t) among
the three simulatedK ’s and searching for the best power la
behavior@11,12#. In short-time critical dynamics, it has bee
intensively discussed that universal behavior emerges
after a time scaletmic that is large enough in a microscop
sense. If a Monte Carlo time step~a sweep over all spins o
the lattice! is a microscopic time unit,tmic is typically 10 to
some hundred time steps@12#. In first-order transitions,
physical behavior at amacroscopiclevel is presented also
only aftertmic . In the upper part of Fig. 2,K* obtained with
data in a time interval@ t,tmax# is shown. The results ar
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stable andK* is clearly aboveKc . The final value forK* is
estimated to beK7s* 51.293 854(29). This is consistent wit
the valueK* 51.2945(9) given in Ref.@26#. However, the
latter can hardly distinguishK* from Kc within the error.

To determineK** , we study a dynamic process with a
ordered initial state. We have performed extra simulatio
for L5560, up to tmax56000. Total samples forL5140,
280, and 560 are 7000, 1500, and 135, respectively. In
1~b! the magnetization withL5280 is plotted for K
51.2929, 1.2930, and 1.2931. The curve forKc
51.293 562~not in the figure! is much above that for 1.2931
and very far from power law behavior. However, at t
pseudo-critical-pointK** we will observe approximate
power law behavior. Searching for a curve with the b
power law behavior from the three curves in Fig. 1~b!, we
determine the pseudo-critical-pointK** . The results are pre
sented in the lower part of Fig. 2. The values are clea
below Kc .

Another interesting observable is the Binder cumula
U(t)[M (2)(t)/@M (t)#221. If a transition is second order
U(t) obeys a power law at the transition point. Therefore
can also be used for the determination ofK** . Results are
included in Fig. 2. Summarizing all these measureme
leads toK7s** 51.293 008(7).

FIG. 2. Seven-state Potts model. The upper part showsK* ob-
tained fromM (2)(t) in the interval@ t,tmax#. The lower part shows
K** obtained fromM (t) andU(t). The line denotesKc .
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FIG. 3. Five-state Potts model:~a! M (2)(t) on log-log scale forKc51.174 359 andK51.174 570 withL5560. ~b! M (t) for K
51.174 280 andKc51.174 359 withL5560.
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For the five-state Potts model, the transition is extrem
weak. One should carry out the simulations very carefu
To locateK* , we have first performed simulations withL
5560 for K51.174 359 (Kc), 1.174 946, and 1.175 533, u
to tmax510 000 with 1800 samples. The resultingK5s*
51.17 445(6) is not accurate enough. Therefore ano
simulation has been carried out atK51.174 570, which is
much closer toK* . In Fig. 3~a!, the second moments forK
51.174 359 (Kc) and 1.174 570 are displayed. With the
data, more accurate values forK* are obtained and collecte
in the upper part of Fig. 4. We estimate the averagedK5s*
51.174 404(7).

Similar is the case for the determination ofK** . We have
first performed simulations with an ordered initial state w
L5280 and 560 forK51.173 890, 1.174 125, and 1.174 35
(Kc), up to tmax510 000 with total samples 725. From th
data for the magnetization we estimate a roughK5s**
51.17 428(9). Then we performed simulations atK
51.174 280 and 1.174 359 (Kc) up to tmax540 000. The re-
sults are not sensitive to whether we taketmax510 000 or
40 000. In Fig. 3~b!, the magnetization atK51.174 280 and
1.174 359 (Kc) are plotted. From the lower part of Fig. 4, w
obtain a final valueK5s** 51.174 322(2).

FIG. 4. Five-state Potts model. The upper part showsK* ob-
tained fromM (2)(t) with L5560 in the interval@ t,tmax510 000#.
The lower part showsK** obtained fromM (t) with L5560 in the
interval @ t,tmax540 000#. The line denotesKc .
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In Table I, all results forK* and K** have been col-
lected. For both the seven-state and the five-state P
model,K* andK** are clearly above and below the trans
tion pointKc, respectively. Our short-time dynamic approa
indeed provides a safe criterion for a weak first-order tran
tion. For standard second-order transitions,K* and K**
~i.e., Kc) determined from both dynamic processes over
within errors@12#. Due to strong corrections to scaling, th
four-state Potts model is known to be complicated in sim
lations in equilibrium. In short-time dynamics, our data al
show that the measuredK* andK** are relatively sensitive
to the time interval for the measurements. But there are
no means signals thatK* is bigger thanK** .

Since our dynamic measurements are carried out in
short-time regime when the spatial correlation length is s
short, we can easily control the finite-size effect. We also
not have the problem of generating independent configu
tions and therefore do not suffer from slowing down. Aft
excluding the finite-size effect, the measurements are se
tive enough to distinguish a finite but very large spatial c
relation length in equilibrium from an infinite one. This
why our method is successful.

With the pseudo critical points in hand, assuming simi
scaling laws as in second-order transitions@12#, one can es-
timate corresponding pseudo critical exponents. AtK* , e.g,

M (2)~ t !}tc2, c25~d22b/n!/z. ~1!

At K** , for the magnetization,

M ~ t !}t2c1, c15b/nz, ~2!

while for the Binder cumulant

U~ t !}tcU, cU5d/z. ~3!

TABLE I. Pseudo-critical-pointsK** andK* for the five-state
and seven-state Potts models, in comparison with the trans
point Kc .

K** Kc K*

q55 1.174322~2! 1.174359 1.174404~7!

q57 1.293008~7! 1.293562 1.293854~29!
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Here d is the dimension of the lattice,b and n are static
exponents, andz is the dynamic exponent. However, the va
ues of the exponents atK* andK** can be different. Plot-
ting the observables vst in log-log scale, one measures th
exponents from the slopes. The results are given in Tabl
We admit that complete sets of exponents cannot be obta
so easily. One needs more careful simulations.

In conclusion, we have proposed a short-time dynam
approach to weak first-order transitions. From nonequi
rium short-time behavior of two dynamic processes start
from random and ordered initial states, pseudo critical po
K* and K** are determined. Difference ofK* and K**
distinguishes a weak first-order transition from a seco

TABLE II. Pseudo critical exponents for the five-state a
seven-state Potts models.

c1** cU** c2*

q55 0.091~2! 0.93~3! 0.716~3!

q57 0.0239~2! 0.885~8! 0.502~5!
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order one. Since the measurements are carried out in s
time regimes, the method does not suffer from slowi
down. Different from many techniques developed in simu
tions in equilibrium, our method is not based on the fini
size scaling.

A simple average ofK* and K** gives a rather good
estimate of the transition pointKc , especially for very weak
transitions. For example, for the five-state Potts model (K*
1K** )/251.174 363 and the relative deviation from the e
act Kc is only the order ofO(1026). It is interesting to in-
vestigate how to obtain an accurateKc for not too weak
transitions. Furthermore, how other relevant observab
such as the specific heat and energy distribution evolve
nonequilibrium dynamics is also an important topic. It
challenging whether from short-time dynamics one can e
mate the latent heat and the discontinuity of the order par
eter in equilibrium.
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